主管:中华人民共和国应急管理部
主办:应急管理部天津消防研究所
ISSN 1009-0029  CN 12-1311/TU

消防科学与技术 ›› 2026, Vol. 44 ›› Issue (1): 144-148.

• • 上一篇    下一篇

基于可见光和热红外融合的高架仓库早期火灾探测技术研究

许保友1, 郑晓东2, 霍一诺2   

  1. (1.中国外运股份有限公司,北京 100029; 2.清华大学合肥公共安全研究院,安徽 合肥230601)
  • 收稿日期:2025-05-27 修回日期:2025-09-15 出版日期:2026-01-15 发布日期:2026-01-15
  • 作者简介:许保友,中国外运股份有限公司安全环保部(应急管理部)副总经理,高级工程师,硕士,主要从事消防安全管理、智慧消防技术开发应用、危险货物储存与运输管理等研究,北京市朝阳区安定路5号院10号楼招商局广场B座9层100029,xubaoyou@sinotrans.com。

Research on early fire detection technology for high-rack storage based on visible light and thermal infrared fusion

Xu Baoyou1, Zheng Xiaodong2, Huo Yinuo2   

  1. (1. Sinotrans Co., Ltd., Beijing 100029, China; 2. Hefei Institute for Public Safety Research, Tsinghua University, Hefei Anhui 230601, China)
  • Received:2025-05-27 Revised:2025-09-15 Online:2026-01-15 Published:2026-01-15

摘要: 高架仓库因货物密集、结构复杂及光照干扰等因素,使得早期火灾难以精准探测。针对这一问题,提出了一种融合可见光与红外图像的轻量化深度学习算法。该方法采用双流特征提取网络,并引入跨模态特征互补机制,有效提升了对烟雾与火焰特征的识别能力。同时,设计了基于视频灰度突变分析的DFASC-IPV辅助模块,能够有效抑制光源干扰并增强对稀薄烟雾的响应。试验结果表明,该方法在复杂仓储场景中相比单模态方法,准确率提升了11.46%,召回率提升了13.14%,具备良好的鲁棒性和实用性。研究成果为高架仓库的早期火灾探测提供了可靠的技术路径。

关键词: 仓储火灾检测, 双模态融合, 注意力机制, DFASC-IPV

Abstract: Early fire detection in high-rack storages is challenging due to dense cargo storage, complex structural configurations, and lighting interference. To address this issue, a lightweight deep learning algorithm that fuses visible and infrared images is proposed. The method employs a dual-stream feature extraction network and incorporates a cross-modal feature complementation mechanism to effectively enhance the recognition capabi-lity for smoke and flame characteristics. Additionally, a DFASC-IPV auxiliary module based on video grayscale variation analysis is designed to effectively suppress light source interference and enhance responsiveness to thin smoke. Experimental results demonstrate that compared with single-modal methods, the proposed approach achieves an accuracy improvement of 11.46% and a recall improvement of 13.14% in complex storage scenarios, exhibiting excellent robustness and practicality. This research provides a reliable technical solution for early fire detection in high-rack storages.

Key words: warehouse fire detection, bimodal fusion, attention mechanism, DFASC-IPV