主管:中华人民共和国应急管理部
主办:应急管理部天津消防研究所
ISSN 1009-0029  CN 12-1311/TU

消防科学与技术 ›› 2025, Vol. 44 ›› Issue (6): 809-815.

• • 上一篇    下一篇

深度神经网络预测硅胶泡沫复合材料阻燃性能

刘博, 宫花, 张馨, 梁文昊, 丁东杰   

  1. (西安科技大学 安全科学与工程学院,陕西 西安 710054)
  • 收稿日期:2024-05-20 修回日期:2024-07-15 出版日期:2025-06-24 发布日期:2025-06-15
  • 作者简介:刘 博,西安科技大学安全科学与工程学院副教授,博士,主要从事消防安全技术、阻燃材料方面的研究工作,陕西省西安市碑林区雁塔中路58号,710054,liubo_2013@163.com。
  • 基金资助:
    国家自然科学基金项目(51904233);陕西省自然科学基础研究计划项目(2024JC-YBMS-251);陕西省教育厅青年创新团队建设科研计划项目(21JP076)

Research on the influence of actual rescue factors on the fire resistance performance of reinforced concrete structures

Liu Bo, Gong Hua, Zhang Xin, Liang Wenhao, Ding Dongjie   

  1. (College of Safety Science and Engineering, Xi'an University of Science and Technology, Xi'an Shaanxi 710054, China)
  • Received:2024-05-20 Revised:2024-07-15 Online:2025-06-24 Published:2025-06-15

摘要: 提出一种基于深度神经网络模型(DNN)的硅橡胶泡沫复合材料(SRF)阻燃性能预测方法。首先制备SRF样品并通过试验表征测试获得初始数据集,优化DNN预测模型并与其它4种基础模型进行比较分析。结果表明,当含氢硅油和铂催化剂的质量分数分别增加到7.24%和1.16%时,极限氧指数值提高到28.6%,热释放速率峰值和总热释放分别降低了24.83%和24.7%。所搭建的最佳DNN模型的决定系数为0.925,设置验证集分析DNN模型预测精度,其相对误差不超过10.8%。最后通过部分依赖图对DNN预测结果和输入变量之间进行可解释性分析。利用模型预测SRF的极限氧指数、热释放速率等阻燃性能试验参数,能够有效指导硅橡胶泡沫复合材料性能的快速优化。

关键词: 硅橡胶泡沫, 机器学习, 深度神经网络, 氧指数, 热释放

Abstract: A SRF flame retardant performance prediction method based on deep neural network model (DNN) is proposed. The SRF samples were prepared and the initial data set was obtained by experimental characterization test. The DNN prediction model was optimized and compared with the other four basic models. The results showed that the limiting oxygen index increased to 28.6%, and the peak heat release rate and total heat release decreased by 24.83% and 24.7%, respectively, when the hydrogen-containing silicone oil and platinum catalyst were increased to 7.24% and 1.16%, respectively. The coefficient of determination of the best DNN model is 0.925. The validation set is set to analyze the prediction accuracy of the DNN model, and the relative error does not exceed 10.8 %. Finally, the interpretability between DNN prediction results and input variables is analyzed by partial dependence graph. The experimental parameters of flame retardant properties such as limiting oxygen index and heat release rate of SRF can be predicted by the model, which can effectively guide the rapid optimization of the properties of silicone rubber foam composites.

Key words: silicone rubber foam, machine learning, deep neural network, oxygen index, heat release