主管:中华人民共和国应急管理部
主办:应急管理部天津消防研究所
ISSN 1009-0029  CN 12-1311/TU

消防科学与技术 ›› 2025, Vol. 44 ›› Issue (10): 1502-1509.

• • 上一篇    下一篇

过载和直流分量作用下五芯电缆温度场仿真分析

潘红光1, 张亿1, 何瑢1, 王运涛2   

  1. (1.西安科技大学 电气与控制工程学院,陕西 西安 710054; 2.青岛鼎信通讯股份有限公司,山东 青岛 266024)
  • 收稿日期:2025-06-03 修回日期:2025-08-27 出版日期:2025-10-15 发布日期:2025-10-15
  • 作者简介:潘红光,西安科技大学电气与控制工程学院副教授,主要从事电气火灾早期智能监测预警方面的研究,陕西省西安市雁塔区,710054,hongguangpan@163.com。
  • 基金资助:
    国家重点研发计划项目(2023YFC3009802);陕西省教育厅科学研究计划项目(23JK0152);陕西省教育厅服务地方专项计划项目(23JC049)

Simulation analysis of temperature field of five-core cable under overload and DC component effects

Pan Hongguang1, Zhang Yi1, He Rong1, Wang Yuntao2   

  1. (1. College of Electrical and Control Engineering, Xi'an University of Science and Technology, Xi'an Shaanxi 710054, China; 2. Qingdao Topscomm Communication Co., Ltd., Qingdao Shandong 266024, China)
  • Received:2025-06-03 Revised:2025-08-27 Online:2025-10-15 Published:2025-10-15

摘要: 过载和直流分量会增大导体电流的有效值,电流有效值超过最大载流量时会产生附加损耗,导致电缆温度升高甚至引发电气火灾。针对多芯电缆在过载和直流分量下的温度场演变和电气火灾风险评估的问题,本研究利用COMSOL Multiphysics搭建了WDZ-YJY(4×50+1×25)型五芯电缆的电磁-热耦合模型,模拟不同程度过载和直流分量下的电缆温度场。结果表明,正常运行时,缆芯温度为61.61 ℃,随着过载倍数的增加,缆芯温度逐渐升高并最终趋于稳态,当过载1.3倍时,缆芯最高温度达到90.35 ℃;直流分量从1%增加到10%的过程中,缆芯温度呈现小幅度的上升趋势,当直流分量为10%时,缆芯最高温度达到64.56 ℃。过载使电缆温度显著升高,超90 ℃安全限值后易加速绝缘老化,存在引发电气火灾的危险;直流分量的热效应与过载相比较弱,但在高直流分量下,电缆温度升高较明显。该研究有助于评估电缆的运行状态,为电气火灾早期监测系统中的热风险识别和告警阈值设置提供理论支撑,提升复杂运行条件下的多芯电缆状态评估和风险预警能力。

关键词: 五芯电缆, 过载, 直流分量, 电磁-热耦合, 温度场

Abstract: Overload and direct current (DC) components increase the effective value of the conductor current. When the effective current exceeds the maximum current-carrying capacity, additional losses occur, leading to temperature rise and even electrical fires. To address the insufficient research on temperature field evolution and fire risk assessment of multi-core cables under overload and DC components, this study develops an electromagnetic-thermal coupling model of the WDZ-YJY (4×50+1×25) five-core cable using COMSOL Multiphysics, to simulate the temperature field under different overload levels and DC components. The results show that under normal operation, the core temperature is 61.61 ℃. As the overload factor increases, the core temperature rises and gradually approaches a steady state. At 1.3 times overload, the maximum core temperature reaches 90.35 ℃. When the DC component increases from 1% to 10%, the core temperature shows a slight upward trend, reaching 64.56 ℃ at 10%. Overload causes a significant temperature rise, and once it exceeds the safety limit of 90 ℃, it accelerates insulation aging and triggers potential fire hazards. The thermal effect of DC components is relatively weaker than overload, but high DC levels still lead to notable temperature increases. This study provides a basis for evaluating cable operational status, supports thermal risk identification and alarm threshold setting in early fire monitoring systems, and enhances the assessment and early warning of multi-core cables under complex operating conditions.

Key words: five-core cable, overload, DC component, electromagnetic-thermal coupling, temperature field