主管:中华人民共和国应急管理部
主办:应急管理部天津消防研究所
ISSN 1009-0029  CN 12-1311/TU

消防科学与技术 ›› 2026, Vol. 44 ›› Issue (1): 90-99.

• • 上一篇    下一篇

温度和风速耦合作用下的液氢加氢站微小泄漏扩散模拟

周忠泉, 邢志祥, 吴洁   

  1. (常州大学 安全科学与工程学院,江苏 常州 213164)
  • 收稿日期:2024-09-13 修回日期:2024-12-04 出版日期:2026-01-15 发布日期:2026-01-15
  • 作者简介:周忠泉,常州大学安全科学与工程学院硕士研究生,主要从事氢能源安全方面的研究,江苏省常州市武进区滆湖中路21号,213164。
  • 基金资助:
    国家重点研发计划子课题(2022YFB4002803-03,2022YFB4002804-03)

Simulation of the diffusion of small leakage in liquid hydrogen refueling stations under the coupling effect of temperature and wind speed

Zhou Zhongquan, Xing Zhixiang, Wu Jie   

  1. (School of Safety Science and Engineering, Changzhou University, Changzhou Jiangsu 213164, China)
  • Received:2024-09-13 Revised:2024-12-04 Online:2026-01-15 Published:2026-01-15

摘要: 针对液氢加氢站安全管理和风险控制问题,采用模拟验证及数值分析的方式,深入探究液氢加氢站微小泄漏扩散特性及其受温度、风速耦合影响的规律。研究结果表明,液氢微小泄漏迅速形成氢气云,其扩散距离随风速增加而显著增长,在无风条件下,30 s时氢气云团扩散至距泄漏口12 m处;风速3.06 m/s时,扩散至24 m;风速5.59 m/s时,扩散至28 m,但高风速会导致低高度区域氢气聚集,需调整围墙高度。同时,风速增加会促进氢气云团的稀释,常温下高风速天气较低风速天气氢气摩尔分数降低约7.53%,低温下降低约5.98%,高温则加速液氢蒸发,提高氢气云团初始浓度和扩散范围。温度和风速共同影响氢气云团的初始浓度、扩散范围和最终稳定浓度,制定安全措施时需全面考虑风速、温度及火源等因素,特别是高温和高风速条件下,需加强实时监控和应急准备。

关键词: 液氢加氢站, 微小泄漏, 环境温度, 风速, 数值模拟

Abstract: Against the safety management and risk control problems of hydrogen refueling stations, using simulation and mathematical analysis, explore the dynamics of small leakage and diffusion of liquid hydrogen while assessing the interactive effects of temperature and wind speed. The results indicate that a small leakage of liquid hydrogen results in the rapid formation of a hydrogen cloud, with its diffusion distance markedly increasing as wind speed escalates. In the absence of wind, the hydrogen cloud spreads to a distance of 12 m from the leakage port within 30 s. When the wind speed reaches 3.06 m/s, the cloud extends to 24 m, and at 5.59 m/s, it expands to 28 m. However, higher wind speeds can lead to hydrogen accumulation in lower altitudes, necessitating adjustments to wall height. Additionally, a rise in wind speed facilitates the dilution of the hydrogen cloud. At normal temperatures, the hydrogen mole fraction drops by approximately 7.53% compared to low wind speeds, and by roughly 5.98% at lower temperatures. Conversely, at higher temperatures, the evaporation of liquid hydrogen accelerates, augmenting both the initial concentration and diffusion range of the hydrogen cloud. Both temperature and wind speed have a combined influence on the initial concentration, diffusion range, and final stable concentration of the hydrogen cloud. When devising safety measures, factors such as wind speed, temperature, and potential fire sources must be thoroughly considered. Particularly under conditions of high temperature and high wind speed, it is imperative to enhance real-time monitoring and emergency preparedness.

Key words: liquid hydrogen refueling station, small leaks, temperature, wind speed, numerical simulation