主管:中华人民共和国应急管理部
主办:应急管理部天津消防研究所
ISSN 1009-0029  CN 12-1311/TU

消防科学与技术 ›› 2023, Vol. 42 ›› Issue (9): 1174-1179.

• • 上一篇    下一篇

泄漏压力对阀门高压氢气自燃影响的数值模拟

汪宗成, 李权, 王昌建   

  1. (合肥工业大学 土木与水利工程学院,安徽 合肥 230009)
  • 出版日期:2023-09-15 发布日期:2023-09-15
  • 作者简介:汪宗成(1998- ),男,合肥工业大学土木与水利工程学院硕士研究生,主要从事氢泄漏自燃数值模拟研究,安徽省合肥市屯溪路193号,230009。
  • 基金资助:
    国家重点研发计划项目“加氢站关键零部件损伤机制及失效模式研究”(2019YFB1505301);安徽省重点研发计划“隧道内燃料电池车氢泄漏安全性研究”(2022h11020013)

Numerical study on the release pressures effect on the high-pressure hydrogen spontaneous ignition

Wang Zongcheng, Li Quan, Wang Changjian   

  1. (School of Civil and Hydraulic Engineering, Hefei University of Technology, Anhui Hefei 230009, China)
  • Online:2023-09-15 Published:2023-09-15

摘要: 阀门工作过程中易受到高压氢气瞬间冲击导致损伤,引起高压氢泄漏而发生自燃。基于OpenFOAM平台开发了氢自燃模拟软件,采用Fuller-Schettler-Giddings扩散系数模型、21步氢/空气化学反应机理描述氢自燃的扩散和化学反应过程,开展了阀门高压氢泄漏自燃数值模拟研究,分析4~10 MPa泄漏压力下高压氢气通过阀门泄漏的自燃机制,给出诱发自燃的高压氢临界泄漏压力。研究表明:相比于大部分直管道泄漏,高压氢通过阀门发生泄漏时,由于阀门内部复杂的结构导致激波发生反射和绕射现象,提高了波后空气温度,促使阀门内高压氢自燃的发生。当泄漏压力达到6 MPa,自燃首先在管道中心处发生。泄漏压力从6 MPa增加到10 MPa时,自燃发生时间从26 μs减少到10 μs,自燃所需距离从24 mm减小到10 mm,提高了自燃发生概率。

关键词: 氢安全, 火焰, 泄漏, 自燃, 数值模拟

Abstract: The valve is susceptible to damage caused by the instantaneous impact of high-pressure hydrogen during operation, resulting in spontaneous ignition of high-pressure hydrogen release. In this paper, an in-house solver is developed within OpenFOAM framework. The Fuller-Schettler-Giddings diffusion coefficient model and 21-step hydrogen/air chemical reaction mechanism is used to describe the diffusion and chemical reaction of spontaneous ignition process. Meanwhile, this paper carries out the numerical study on spontaneous ignition of high-pressure hydrogen release from valve and analyses the influence law of 4~10 MPa release pressures on spontaneous ignition of high-pressure hydrogen release. The critical pressure for spontaneous ignition of high-pressure hydrogen release though a valve is given. The investigation shows that, compared with straight tube leaks, when the high-pressure hydrogen release though a valve, the complex structure inside the valve causes the reflection and bypassing of the leading shock wave, which raises the shock-heated air temperature and promotes the occurrence of spontaneous ignition of high-pressure hydrogen inside the valve. When the release pressure reaches 6 MPa, spontaneous ignition occurs at the center of the valve. In addition, the increase in release pressure increases the likelihood of spontaneous ignition, as the release pressure increases from 6 MPa to 10 MPa, the time required for ignition decreases from 26 μs to 10 μs and the distance required for ignition decreases from 24 mm to 10 mm.

Key words: hydrogen safety, flame, leakage, spontaneous ignition, numerical simulation