主管:中华人民共和国应急管理部
主办:应急管理部天津消防研究所
ISSN 1009-0029  CN 12-1311/TU

消防科学与技术 ›› 2025, Vol. 44 ›› Issue (10): 1517-1523.

• • 上一篇    下一篇

基于电磁-热耦合的过载工况下低压五芯电缆温度预测

赵永秀1,2, 房家昶1, 孔令豪1, 刘树林1,2   

  1. (1.西安科技大学 电气与控制工程学院,陕西 西安 710699; 2.西安市电气设备状态监测与供电安全重点实验室,陕西 西安 710699)
  • 收稿日期:2025-06-03 修回日期:2025-07-24 出版日期:2025-10-15 发布日期:2025-10-15
  • 作者简介:赵永秀,西安科技大学电气与控制工程学院副教授,主要从事电力电子与电力传动、电气线路火灾防控与公共安全、本质安全电路放电及防爆理论方面的研究,陕西省西安市临潼区陕鼓大道48号,710699。
  • 基金资助:
    国家重点研发计划项目(2023YFC3009802)

Temperature prediction of low-voltage five-core cables during electromagnetic-thermal coupled overload operation

Zhao Yongxiu1,2, Fang Jiachang1, Kong Linghao1, Liu Shulin1,2   

  1. (1. School of Electrical and Control Engineering, Xi'an University of Science and Technology, Xi'an Shaanxi 710699, China;2. Xi'an Key Laboratory of Electrical Equipment Condition Monitoring and Power Supply Safety, Xi'an Shaanxi 710699, China)
  • Received:2025-06-03 Revised:2025-07-24 Online:2025-10-15 Published:2025-10-15

摘要: 针对传统热路模型在预测低压五芯电缆过载温度时因多相热源耦合、几何非均匀性及电阻温度效应导致的精度不足问题,建立一种基于电磁-热耦合的二维暂态温度场有限元模型。以YJV 5.0×2.5 mm²低压电缆为研究对象,通过求解麦克斯韦与暂态热传导方程,结合Galerkin弱形式离散和隐式欧拉时间积分算法,得到不同工况下的电缆温度演化趋势。结果表明,三相对称工况下B相是绝缘失效高风险区域,环境温度从15 ℃升高至40 ℃,缆芯稳态时温升为27.53 ℃,损耗增幅为18.68%;负载电流由15 A升高至35 A,缆芯稳态时温升为81.1 ℃,损耗增幅为37.18%。试验结果表明,模型预测外护套温度平均绝对误差小于3%,且3 600 s暂态仿真可在5 min内完成。该模型解决了传统方法对多物理场耦合的简化局限,可应用于电气火灾危险排查与过热警报,为电缆载流量动态评估、超温预警及过热保护提供理论依据。

关键词: 五芯电缆, 电磁-热耦合, 有限元法, 温度场

Abstract: For the prediction of overload temperatures in low-voltage five-core cables, traditional thermal-network models suffer from accuracy degradation due to multiphase heat‐source coupling, geometric nonuniformity, and the temperature dependence of resistance. To address these shortcomings, this paper develops a two-dimensional, transient temperature-field finite‐element model based on electromagnetic-thermal coupling. Taking YJV 5.0×2.5 mm² low-voltage cable as the study object, the coupled Maxwell and transient heat‐conduction equations are solved via a Galerkin weak‐form discretization and an implicit Euler time‐integration scheme to obtain cable‐temperature evolution under various operating conditions. The results indicate that under balanced three-phase loading, the B-phase core constitutes the highest‐risk zone for insulation failure; when ambient temperature rises from 15 °C to 40 °C, the steady-state core temperature increases by 27.53 °C, corresponding to an 18.68% loss increment. With load current elevated from 15 A to 35 A, steady-state core temperature rises by 81.1 °C, with losses increasing by 37.18%. Experimental validation shows that the model predicts outer-sheath temperature with a mean absolute error below 3%, and that a 3 600 s transient simulation completes within 5 min. The proposed model overcomes the simplifications inherent in traditional methods for multiphysics coupling and can be applied to electrical‐fire hazard assessment and overheat warnings, providing theoretical support for dynamic current‐carrying capacity evaluation, overtemperature alerting, and overheating protection.

Key words: five-core cable, electromagnetic-thermal coupling, finite element method, temperature field