主管:中华人民共和国应急管理部
主办:应急管理部天津消防研究所
ISSN 1009-0029  CN 12-1311/TU

消防科学与技术 ›› 2025, Vol. 44 ›› Issue (10): 1524-1529.

• • 上一篇    下一篇

基于概率报警的电气火灾综合预警方法研究

王菁川, 李明, 吴建彬   

  1. (上海意静信息科技有限公司,上海 200120)
  • 收稿日期:2025-06-06 修回日期:2025-08-18 出版日期:2025-10-23 发布日期:2025-10-15
  • 作者简介:王菁川,上海意静信息科技有限公司总经理,高级工程师,主要从事智慧消防、监测预警方面的研究,上海市浦东新区沪南路2419弄复地万科活力城B座801室,201208,jerry.wang@firedata.cn。
  • 基金资助:
    国家重点研发计划项目(2023YFC3009805)

Research on electrical fire comprehensive early warning method based on probability alarm

Wang Jingchuan, Li Ming, Wu Jianbin   

  1. (Shanghai Aifire Information Technology Co., Ltd., Shanghai 200120, China)
  • Received:2025-06-06 Revised:2025-08-18 Online:2025-10-23 Published:2025-10-15

摘要: 电气火灾作为我国主要的火灾类型之一,长期威胁着人民生命和财产安全。传统基于固定阈值的报警系统在复杂多变的用电环境中适应性差、误报和漏报率高,限制了预警效果。本文针对这一问题,提出了一种概率报警模型的电气火灾综合预警方法。该方法基于贝叶斯网络与长短期记忆神经网络(LSTM)构建了双层动态风险评估框架,能够对线路超温、发光连接及故障电弧等关键隐患特征进行联合建模和时序分析。研究设计了相应的预警指标体系及数据采集处理方案,开发了集数据分析、风险评估与预警推送于一体的综合预警平台。通过小样本试验验证,结果表明该方法能够有效区分正常与故障工况,显著提升了预警准确率和自适应能力,为智能化监测预警系统建设提供了新路径。

关键词: 电气火灾, 概率报警, 综合预警平台, 云边端协同, 火灾预防

Abstract: As one of the primary types of fires in China, electrical fires have long posed a serious threat to public safety and property. Traditional fixed-threshold alarm systems often suffer from poor adaptability in complex and variable electrical environments, leading to high rates of false alarms and missed detections, thereby limiting their early warning effectiveness. Against this problem, this study proposes a comprehensive early warning method for electrical fires that integrates a probabilistic alarm model. A dual-layer dynamic risk assessment framework is constructed by integrating Bayesian Networks with Long Short-Term Memory (LSTM) neural networks. This framework enables joint modeling and temporal analysis of key risk features such as line overheating, luminous connection, fault arc, etc. A set of early warning indicators is established along with corresponding data acquisition and processing strategies. On this basis, a comprehensive early warning platform is developed, incorporating data analysis, risk assessment, and warning notifications. Preliminary tests on small-sample datasets demonstrate the method’s ability to effectively distinguish between normal and fault conditions, showing high accuracy and promising applicability. This research offers a new pathway for developing intelligent electrical fire monitoring and early warning systems.

Key words: electrical fire, probability alarm, integrated early warning platform, cloud-edge-device collaboration, fire prevention