主管:中华人民共和国应急管理部
主办:应急管理部天津消防研究所
ISSN 1009-0029  CN 12-1311/TU

消防科学与技术 ›› 2025, Vol. 44 ›› Issue (6): 839-845.

• • 上一篇    下一篇

基于SwinTransformer的去雾算法在森林消防中的应用

季长清1,2, 曹思雨2, 李艳志3,4,5, 汪祖民2   

  1. (1.大连大学 物理科学与技术学院,辽宁 大连116622; 2.大连大学 信息工程学院,辽宁 大连 116622; 3.应急管理部天津消防研究所,天津 300381)
  • 收稿日期:2024-06-03 修回日期:2024-10-27 出版日期:2025-06-24 发布日期:2025-06-15
  • 作者简介:季长清,大连大学副教授,博士,计算机学会(CCF)高级会员(24339M),主要从事人工智能、大据与物联网方面的研究,辽宁省大连市经济技术开发区学府大街10号,116622。

Research on the influencing factors of helicopter firefighting capability in forest aviation

Ji Changqing1,2, Cao Siyu2, Li Yanzhi3,4,5, Wang Zumin2   

  1. (1. College of Physical Science and Technology, Dalian University, Dalian Liaoning 116622,China; 2. College of Information Engineering, Dalian University, Dalian Liaoning 116622, China; 3. Tianjin Fire Science and Technology Research Institute of MEM, Tianjin 300381, China)
  • Received:2024-06-03 Revised:2024-10-27 Online:2025-06-24 Published:2025-06-15

摘要: 为了及时控制森林火灾,在了解起火地区的地表植被、地形地势信息后预测火灾的下一步蔓延趋势,并针对具体的地表信息制定灭火计划至关重要。但对于遥感拍摄的地表图像,往往由于天气原因含有不均匀的云雾遮挡,这些云雾会影响地表植被信息的观测,从而对火灾的蔓延趋势产生影响。Dehazeformer作为一种基于深度学习的去雾方法,展现出了一定的去雾效果,但该算法在面对具有实时性要求的任务时无法拥有更好的表现。因此,针对该去雾模型参数量过大、对雾霾细节处理不够完善的缺点,本文在其基础上做出了改进,以实现轻量化以及去雾效果方面的提升。改进后模型的测试结果显示,PSNR,SSIM两种指标分别实现了一定的提升,在具体火灾监测场景中该模型能够通过去雾显著提高火灾周围地表信息的辨识度,为预测火灾蔓延趋势提供帮助。

关键词: 图像去雾, 遥感, 深度学习, 火灾蔓延, 森林火灾

Abstract: To effectively control forest fires, it is crucial to predict the spread of the fire after obtaining information on the ground vegetation, topography, and terrain of the affected area, and to develop firefighting strategies accordingly. However, remote sensing images of the ground are often obscured by uneven cloud and fog due to weather conditions, which impairs the observation of ground vegetation information and subsequently affects predictions of fire spread. Dehazeformer, a deep learning-based dehazing method, has demonstrated some effectiveness in haze removal. However, the algorithm struggles to meet real-time performance requirements in time-sensitive tasks. To address the limitations of large model parameters and inadequate handling of haze details, this study introduces improvements to the model, focusing on lightweighting and enhancing dehazing performance. The improved model's test results indicate certain improvements in PSNR and SSIM metrics. In practical fire monitoring scenarios, the model significantly enhances the discernibility of ground information surrounding fire-affected areas through dehazing, thereby aiding in the prediction of fire spread trends.

Key words: image dehazing, remote sensing, deep learning, fire spread, forest fire