主管:中华人民共和国应急管理部
主办:应急管理部天津消防研究所
ISSN 1009-0029  CN 12-1311/TU

消防科学与技术 ›› 2025, Vol. 44 ›› Issue (7): 970-976.

• • 上一篇    下一篇

融合火灾多特征参量的寺院古建筑自适应火灾探测方法

韩海云, 杨浩, 谢永强, 陈韵怡   

  1. (中国人民警察大学,河北 廊坊 065000)
  • 收稿日期:2024-10-15 修回日期:2024-10-20 出版日期:2025-07-24 发布日期:2025-07-15
  • 作者简介:韩海云,中国人民警察大学教授,主要从事消防标准化、智慧消防、火灾监控与风险评估方面的研究,河北省廊坊市西昌路220号,065000,353614438@qq.com。
  • 基金资助:
    “十四五”国家重点研发计划(2021YFC1523504?03)

Adaptive fire detection method for ancient temple buildings by integrating multiple fire characteristic parameters

Han Haiyun, Yang Hao, Xie Yongqiang, Chen Yunyi   

  1. (China People's Police University, Langfang Hebei 065000, China)
  • Received:2024-10-15 Revised:2024-10-20 Online:2025-07-24 Published:2025-07-15

摘要: 寺院古建筑可燃物复杂,火灾特征参数多样化且存在香火烛烟等干扰源,导致单一参量的火灾探测方式误报率高、可靠性差等。本文提出多参量复合探测方法,通过对火灾初期特征参量进行数据采集与融合,构建寺院古建筑结构和环境自适应的火灾报警模型,实现古建筑早期火灾的精准探测。以雍和宫的雍和门殿、永佑殿和万福阁为例,基于数值模拟获取气体体积分数、温度、能见度等火灾特征参数,利用4层BP神经网络,采用2个维度的训练和测试集组合方案,训练火灾报警模型。结果表明:5项和3项探测数据融合的训练报警模型准确度接近,CO体积分数、温度、能见度为敏感特征参数;火灾报警模型对建筑结构相近的古建筑泛化能力较强,火灾报警准确率高达0.950 0,对非相近结构古建筑的火灾报警准确率大幅降低,仅为0.720 0;基于各独立建筑火灾模拟参数的训练模型对建筑自身的火灾报警准确率较高,均在0.930 0以上。研究过程和结果为复合火灾特征参数选取提供了理论依据,为寺院古建筑构建多探测数据融合的自适应火灾报警模型提供了指导方法和实现路径。

关键词: 寺院古建筑, 火灾探测器, BP神经网络, 火灾特征参量, 复合探测技术

Abstract: The complex combustible materials in ancient temple buildings, diverse fire characteristic parameters, and the presence of interference sources such as incense, candles, and smoke have led to high false alarm rates and poor reliability of single parameter fire detection methods. This article proposes a multi parameter composite detection method, which constructs a fire alarm model that adapts to the structure and environment of ancient temple buildings through data collection and fusion of early fire characteristic parameters, thereby achieving accurate detection of early fires in ancient buildings. Represented by the Yonghe Gate Hall, Yongyou Hall, and Wanfu Pavilion of Yonghe Palace, fire characteristic parameters such as gas volume fraction, temperature, and visibility were obtained through numerical simulation. A 4-layer BP neural network was used to train a fire alarm model using a combination of training and testing sets from two dimensions. The results showed that the accuracy of the training alarm model fused with 5 and 3 detection data was similar, with CO volume fraction, temperature, and visibility as sensitive feature parameters; The fire alarm model has strong generalization ability for ancient buildings with similar building structures, with a fire alarm accuracy rate of up to 0.950 0. The fire alarm accuracy rate for ancient buildings with non similar structures is significantly reduced to only 0.720 0; The training model based on independent building fire simulation parameters has a high accuracy rate of 0.930 0 or above for the fire alarm of the building itself. The research process and results provide a theoretical basis for selecting composite fire characteristic parameters, and provide guidance methods and implementation paths for constructing an adaptive fire alarm model with multi detection data fusion for important temple ancient buildings.

Key words: ancient temple buildings, fire detectors, BP neural network, fire characteristic parameters, composite detection technology