主管:中华人民共和国应急管理部
主办:应急管理部天津消防研究所
ISSN 1009-0029  CN 12-1311/TU

消防科学与技术 ›› 2025, Vol. 44 ›› Issue (8): 1041-1047.

• • 上一篇    下一篇

螺旋管道几何参数对氢气火焰传播与起爆特性的影响机制

李涛1,2,3, 刘楠楠1,2,3, 安伟光1,2,3   

  1. (1.中国矿业大学 煤矿瓦斯与火灾防治教育部重点实验室,江苏 徐州 221116;2.中国矿业大学 煤矿灾害防控全国重点实验室,江苏 徐州 221116;3.中国矿业大学 安全工程学院,江苏 徐州 221116)
  • 收稿日期:2025-02-07 修回日期:2025-03-21 出版日期:2025-08-15 发布日期:2025-08-15
  • 作者简介:李 涛,中国矿业大学安全工程学院副教授,主要从事气体爆炸方面的研究,江苏省徐州市铜山区中国矿业大学南湖校区,221116。
  • 基金资助:
    国家自然科学基金项目(52206184)

Influence rules of geometric parameters on hydrogen flame propagation and detonation initiation characteristics in spiral channels

Li Tao1,2,3, Liu Nannan1,2,3, An Weiguang1,2,3   

  1. (1. Key Laboratory of Gas and Fire Control for Coal Mines, China University of Mining and Technology, Xuzhou Jiangsu 221116, China; 2. State Key Laboratory of Coal Mine Disaster Prevention and Control, China University of Mining and Technology, Xuzhou Jiangsu 221116, China; 3. School of Safety Engineering, China University of Mining and Technology, Xuzhou Jiangsu 221116, China)
  • Received:2025-02-07 Revised:2025-03-21 Online:2025-08-15 Published:2025-08-15

摘要: 采用直接数值模拟方法,比较研究了等宽与变宽螺旋通道内的火焰加速与起爆过程。研究结果表明,螺旋管道内壁一侧的非对称拉伸效应,显著增加了火焰表面积,加速了火焰传播。这种拉伸效应主要源于弯曲通道内流场的非均匀性。与等宽螺旋通道相比,变宽螺旋通道展现出更高的火焰加速率,起爆距离减少约36%。这一现象可归因于以下2个机制:首先,基于前期研究,内圈通道曲率较大时增加其宽度可显著提升火焰加速率;其次,内圈渐缩效应导致火焰前锋与后缘的速度梯度增大,增强了火焰面的拉伸效应。本研究揭示了螺旋通道几何特征对火焰加速和起爆性能的影响,为优化管道设计以降低火焰传播速率和起爆可能性提供了理论依据。

关键词: 螺旋管道, 火焰加速, 火焰传播, 起爆性能, 爆燃转爆轰

Abstract: This study employs direct numerical simulation methods to comparatively investigate the flame acceleration and detonation initiation processes in constant-width and variable-width spiral channels. The results indicate that the spiral channel significantly increases the flame surface area through asymmetric stretching along the inner wall, thereby accelerating flame propagation. This stretching effect primarily arises from the non-uniformity of the flow field within the curved channel. Compared to the constant-width spiral channel, the variable-width spiral channel exhibits a higher flame acceleration rate and a reduction in the detonation initiation distance by approximately 36%. This phenomenon can be attributed to two mechanisms: first, based on previous research, increasing the width of the inner channel when the curvature is large significantly enhances the flame acceleration rate; second, the gradual contraction effect of the inner channel increases the velocity gradient between the flame front and rear, thereby strengthening the flame surface stretching effect. This study reveals the influence of geometric characteristics of spiral channels on flame acceleration and detonation initiation performance, providing a theoretical basis for optimizing pipeline design to reduce flame propagation speed and detonation initiation probability.

Key words: spiral channel, flame acceleration, flame propagation, detonation performance, deflagration to detonation transition