主管:中华人民共和国应急管理部
主办:应急管理部天津消防研究所
ISSN 1009-0029  CN 12-1311/TU

消防科学与技术 ›› 2025, Vol. 44 ›› Issue (9): 1334-1339.

• • 上一篇    

一种面向森林火灾调查的蔓延方向分析及起火点溯源方法

高鹏, 彭波, 吕忠   

  1. (应急管理部四川消防研究所,四川 成都 610036)
  • 收稿日期:2025-06-18 修回日期:2025-07-21 出版日期:2025-09-15 发布日期:2025-09-15
  • 作者简介:高 鹏,应急管理部四川消防研究所副研究员,博士,主要从事电气火灾防控、电气火灾及森林火灾调查、物证鉴定等方面的研究工作,四川省成都市金牛区金科南路69号,610036,253061409@qq.com。
  • 基金资助:
    国家重点研发计划(2022YFC3006300)

A method for spread direction analysis and ignition point backtracking in forest fire investigation

Gao Peng, Peng Bo, Lyu Zhong   

  1. (Sichuan Fire Science and Technology Research Institute of MEM, Chengdu Sichuan 610036, China)
  • Received:2025-06-18 Revised:2025-07-21 Online:2025-09-15 Published:2025-09-15

摘要: 面向森林火灾调查需求,提出了一种森林火灾蔓延方向分析及起火点溯源方法。该方法通过无人机测绘构建火灾现场模型,利用ResNet-18卷积神经网络识别痕迹照片中的火势蔓延方向,结合反距离加权插值法构建连续方向场,采用Runge-Kutta方法进行反向流线积分,最终通过DBSCAN聚类确定起火点位置。仿真结果表明,该方法能够较好地分析蔓延方向,溯源起火点,有效克服传统人工勘查效率低、主观性强等缺点,将专家经验转化为可复用的智能化方法,减少主观依赖,实现起火点智能溯源,为森林火灾调查提供高效、客观的技术支持。

关键词: 森林火灾调查;蔓延方向识别;起火点溯源;卷积神经网络;反向流线积分

Abstract: This paper proposes a method for forest fire spread direction analysis and ignition point backtracking to address forest fire investigation needs. The approach constructs a fire scene model through UAV mapping, utilizes a ResNet-18 convolutional neural network to identify fire spread directions from trace images, and generates a continuous direction field using inverse distance weighted interpolation. Runge-Kutta method is employed for backward streamline integration, with DBSCAN clustering ultimately determining the ignition point location. Simulation results demonstrate the method's effectiveness in analyzing spread patterns and tracing ignition points, overcoming limitations of traditional manual surveys such as low efficiency and subjectivity. By transforming expert knowledge into reusable intelligent algorithms, the approach reduces subjective dependence and achieves intelligent ignition point tracing, providing efficient, objective technical support for forest fire investigations.

Key words: forest fire investigation; spread direction identification; ignition point backtracking; convolutional neural network; backward streamline integration