主管:中华人民共和国应急管理部
主办:应急管理部天津消防研究所
ISSN 1009-0029  CN 12-1311/TU

消防科学与技术 ›› 2026, Vol. 44 ›› Issue (1): 106-113.

• • 上一篇    下一篇

基于PyroSim的华北地区3种常见树种燃烧热辐射影响研究

杜秋洋1,2, 白夜1, 张林1, 张宪忠3, 柯 鑫3, 石 宽1,2   

  1. (1.中国消防救援学院 森林草原火灾风险防控应急管理部重点实验室,北京 102202; 2.北京林业大学 林学院,北京100083; 3.应急管理部天津消防研究所,天津 300381)
  • 收稿日期:2025-03-17 修回日期:2025-05-19 出版日期:2026-01-15 发布日期:2026-01-15
  • 作者简介:杜秋洋,中国消防救援学院讲师,主要从事森林草原防灭火研究,北京市昌平区南口镇南雁路4号,102202。
  • 基金资助:
    森林草原火灾风险防控应急管理部重点实验室开放课题(FGFRP202301);中国消防救援学院科研项目(XFKYB202413);国家消防救援局科技计划项目(2025XFZD09)

Research on the effects of thermal radiation from the combustion of three common tree species in North China based on PyroSim

Du Qiuyang1,2, Bai Ye1, Zhang Lin1, Zhang Xianzhong3, Ke Xin3, Shi kuan1,2   

  1. (1. Key Laboratory of Forest and Grassland Fire Risk Prevention and Control of MEM, China Fire and Rescue Institute, Beijing 102202, China; 2. The College of Forestry of Beijing Forestry University, Beijing 100083, China; 3. Tianjin Fire Science and Technology Research Institute of MEM, Tianjin 300381, China)
  • Received:2025-03-17 Revised:2025-05-19 Online:2026-01-15 Published:2026-01-15

摘要: 本研究基于火灾动力学原理,针对森林火灾中的热辐射开展可燃物燃烧特性与烟气热辐射传导机制的研究。通过锥形量热仪测定华北地区3种常见乔木树种(油松、国槐、杨树)的关键燃烧参数,利用PyroSim软件构建三维燃烧数值模型,分析风速、环境相对湿度和冠层结构对烟气热辐射传导的影响。结果表明,当风速低于6 m/s时,热辐射强度随风速增加而增加;当风速超过6 m/s时,湍流增强导致烟气羽流扩散受限,热辐射强度降低12%~16%;环境相对湿度每升高15%,热辐射强度就增加0.5%~1.6%,但其强化效应存在显著的空间异质性特征;冠层结构改变了树木附近的局部湍流强度,导致热辐射强度分布差异显著。研究结果可为揭示林火热量传导机制提供理论支撑,并为优化灭火战术方案提供科学参考。

关键词: 热辐射, 风速, 湿度, 冠层结构

Abstract: Based on fire dynamics principles, we investigate the combustion characteristics of fuels and the heat radiation transmission mechanisms of smoke in forest fire. Key combustion parameters for three common tree species in North China(Pinus tabuliformis,Sophora japonica,Populus davidiana)were measured using a cone calorimeter. A three-dimensional combustion numerical model was constructed with PyroSim software to analyze the effects of wind speed, ambient relative humidity and canopy structure on smoke heat radiation transmi- ssion. The results indicate that when wind speed is below 6 m/s, thermal radiation intensity increases with wind speed; however, when wind speed exceeds 6 m/s, enhanced turbulence restricts smoke plume diffusion, reducing thermal radiation intensity by 12%~16%. For every 15% increase in ambient relative humidity, thermal radiation intensity increases by 0.5%~1.6%, though this enhancing effect exhibits significant spatial heterogeneity. Canopy structure alters local turbulence intensity near the trees, leading to notable differences in thermal radiation intensity distribution. The findings provide theoretical support for understanding heat transmission mechanisms in forest fires and offer scientific references for optimizing firefighting tactics.

Key words: thermal radiation, wind speed, humidity, canopy structure