主管:中华人民共和国应急管理部
主办:应急管理部天津消防研究所
ISSN 1009-0029  CN 12-1311/TU

消防科学与技术 ›› 2026, Vol. 44 ›› Issue (1): 124-130.

• • 上一篇    下一篇

陶瓷纤维对混凝土高温后抗冲击性能的影响

马行耀1, 杨博2   

  1. (1.浙江建设职业技术学院,浙江 杭州 311231; 2.浙江理工大学,浙江 杭州 310018)
  • 收稿日期:2024-10-18 修回日期:2025-05-22 出版日期:2026-01-15 发布日期:2026-01-15
  • 作者简介:马行耀,浙江建设职业技术学院副教授,主要从事工程管理、建筑材料的研究,浙江省杭州市萧山高教园区浙江建设职业技术学院建筑工程学院,311231,11314255@qq.com。
  • 基金资助:
    浙江省自然科学基金重点项目(LZ23A020008)

Effect of ceramic fiber on impact resistance of concrete after high temperature test

Ma Xingyao1, Yang Bo2   

  1. (1. Zhejiang College of Construction, Hangzhou Zhejiang 311231, China; 2. Zhejiang Sci-Tech University, Hangzhou Zhejiang 310018, China)
  • Received:2024-10-18 Revised:2025-05-22 Online:2026-01-15 Published:2026-01-15

摘要: 与其他纤维相比,陶瓷纤维的显著特点为耐高温和优良的抗冲击性能。为推动陶瓷纤维在混凝土材料领域的应用,通过高温试验和分离式霍普金森压杆试验,研究不同纤维体积掺量(0.1%、0.2%、0.3%)的陶瓷纤维改性混凝土(CRFMC)经历不同高温(200、400、600、800 ℃)作用后的抗冲击性能。通过观察高温作用后CRFMC的微观形貌,分析陶瓷纤维的改性机理。结果表明:陶瓷纤维可以提高混凝土高温后的抗冲击性能,且陶瓷纤维的最佳掺量为0.2%。在此掺量下,CRFMC的破坏程度最轻,动态抗压强度、动态峰值应变和冲击耗散能最大。随着温度的升高,CRFMC的破坏严重程度、动态抗压强度和冲击耗散能先减小后增大,动态峰值应变不断增大。CRFMC的动态峰值应变呈现出温度塑性效应。陶瓷纤维在高温作用后仍保持良好形态,未被分解或熔断。陶瓷纤维对混凝土高温作用后(400~800 ℃)动态抗压强度和冲击耗散能的提高效果较20 ℃时更佳。

关键词: 混凝土, 陶瓷纤维, 高温, 抗冲击性能

Abstract: Compared with other fibers, ceramic fiber is characterized by high temperature resistance and exce- llent impact resistance. In order to promote the application of ceramic fiber in the field of concrete materials, the impact resistance of ceramic fiber modified concrete (CRFMC) with different fiber volume content (0.1%, 0.2%, 0.3%) after different high temperatures (200, 400, 600, 800 ℃) is studied with high temperature test and separated Hopkinson pressure bar test. The modification mechanism of ceramic fiber is analyzed by observing the micromorphology of CRFMC after different high temperature test. The results show that ceramic fiber can improve the impact resistance of concrete after high temperature test, and the optimal content of ceramic fiber is 0.2%. With this fiber content, the damage degree of CRFMC is the lightest, and the dynamic compressive strength, dynamic peak strain and impact dissipation energy are the maximum. With the rise of temperature, the damage severity degree, dynamic compressive strength and impact dissipation energy of CRFMC first decrease and then increase, and the dynamic peak strain increases. The dynamic peak strain of CRFMC shows a thermoplastic effect. Ceramic fiber still maintains good shape after high temperature test, and is not decomposed or fused. The improvement effect of ceramic fiber on dynamic compressive strength and impact dissipative energy of concrete at high temperature (400~800 ℃) is better than that at 20 ℃.

Key words: concrete, ceramic fiber, high temperature, impact resistance