主管:中华人民共和国应急管理部
主办:应急管理部天津消防研究所
ISSN 1009-0029  CN 12-1311/TU

消防科学与技术 ›› 2025, Vol. 44 ›› Issue (9): 1197-1203.

• • 上一篇    下一篇

典型火灾场景下灭火废水径流潜在毒性风险评价

杨旭1, 郭海东1, 杜振齐2, 何瑾1   

  1. (1.应急管理部四川消防研究所,四川 成都 610036; 2.山东建筑大学 市政与环境工程学院,山东 济南 250101)
  • 收稿日期:2025-07-01 修回日期:2025-08-08 出版日期:2025-09-15 发布日期:2025-09-15
  • 作者简介:杨 旭,应急管理部四川消防研究所,主要从事火灾对人和环境的影响研究,四川省成都市金牛区金科南路69号,610036。
  • 基金资助:
    应急管理部四川消防研究所基本科研业务费项目(20238814Z,Z20248812)

Evaluation of potential toxicity risks in firefighting runoff water under typical fire scenarios

Yang Xu1, Guo Haidong1, Du Zhenqi2, He Jin1   

  1. (1. Sichuan Fire Science and Technology Research Institute of MEM, Chengdu Sichuan 610036, China; 2. School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan Shandong 250101, China)
  • Received:2025-07-01 Revised:2025-08-08 Online:2025-09-15 Published:2025-09-15

摘要: 通过搭建建筑、电动自行车、柴油火灾3种典型火灾缩尺灭火试验平台,开展不同灭火策略下灭火径流水质特征、急性毒性及遗传毒性的系统分析,以期为探索灭火径流处置方式和相关标准的制修订提供数据支撑。研究结果显示,不同灭火策略下灭火径流废水大多呈弱酸性和近中性(pH为6.4~7.4),且均具有高有机物负荷特征,其中建筑火灾灭火径流TOC最高可达3 722.5 mg/L。毒理学研究发现,灭火径流废水的4-NQO当量浓度(12.5~75.7 μg/L)显著高于地下水、地表径流的当量浓度值(1~520 ng/L)。对于建筑火灾A类泡沫灭火剂产生的径流废水,其0.1%体积分数稀释液的发光菌抑制率可达63.5%。同时灭火径流废水急性毒性和遗传毒性均随灭火时间的增加而递增,表明可燃物的持续冲刷会增加灭火径流的生态毒性。A类泡沫灭火剂主要贡献了急性毒性,而AFFF泡沫灭火剂则主导了基因毒性效应。基于以上研究结果,未来发生大规模火灾时,在保证灭火救援效果前提下应尽量减少泡沫灭火剂的施放时间,加强灭火废水的收集处置,以减轻灭火径流废水潜在的生态毒性风险。

关键词: 灭火径流;建筑火灾;水质特征;毒性风险

Abstract: This research constructed small scaled fire-suppression experimental platforms emulating three archetypal fire scenarios-structural (building) fires, electric bicycle fires, and diesel fuel fires-to comprehensively characterize aqueous-phase properties, acute toxicity, and genotoxic potential of firefighting runoff under divergent extinguishment strategies. The objectives were to provide data support for exploring the disposal methods of firefighting runoff and the formulation/revision of relevant standards. The results revealed that fire-extinguishing runoff universally exhibited weakly acidic to circumneutral (pH value 6.4~7.4), concomitant with elevated organic burdens. Notably, total organic carbon (TOC) concentrations in structural fire runoff peaked at 3 722.5 mg/L. Toxicological quantification demonstrated that 4-nitroquinoline-N-oxide (4-NQO) equivalency concentrations in runoff (12.5~75.7 μg/L) exceeded groundwater and surface water baselines (1~520 ng/L) by orders of magnitude. Runoff derived from Class A foam deployment during structural fire suppression elicited 63.5% luminescent bacteria (Vibrio fischeri) inhibition at merely 0.1% dilution. Moreover, both acute toxicity and genotoxicity of the firefighting runoff increased with extinguishing duration, indicating that continuous scouring of combustibles enhanced the ecological toxicity of the runoff. Class A foam extinguishing agents primarily contributed to acute toxicity, while aqueous film-forming foams (AFFF) predominantly mediated genotoxic effects. These results suggest that during large-scale fires, while ensuring firefighting and rescue effectiveness, efforts should be made to minimize the application time of foam concentrates and enhance the collection and treatment of firefighting wastewater to mitigate the potential ecological toxicity risks posed by firefighting runoff.

Key words: firefighting runoff; building fire; water quality characteristics; toxicity risk