主管:中华人民共和国应急管理部
主办:应急管理部天津消防研究所
ISSN 1009-0029  CN 12-1311/TU

消防科学与技术 ›› 2025, Vol. 44 ›› Issue (9): 1233-1238.

• • 上一篇    下一篇

铅酸电池热失控特性及预警方法研究

刘冰汐1,4,5, 解飞2, 张晋1,4, 卓萍1,4,5, 马啸3, 毕晓阳3   

  1. (1.应急管理部天津消防研究所,天津 300381; 2.国家石油天然气管网集团有限公司,北京 100013; 3.河北工业大学 机械工程学院,天津 300401; 4.电化学能源消防安全联合创新应急管理部重点实验室,北京 102000; 5.工业与公共建筑火灾防控技术应急管理部重点实验室,天津 300381)
  • 收稿日期:2025-07-14 修回日期:2025-08-20 出版日期:2025-09-15 发布日期:2025-09-15
  • 作者简介:刘冰汐,应急管理部天津消防研究所助理研究员,主要从事锂离子电池火灾防控预警方面的研究,天津市南开区卫津南路110号,300381。
  • 基金资助:
    天津市自然科学基金联合基金(多元投入)(24JCYBJC00190);工业与公共建筑火灾防控技术应急管理部重点实验室开放课题(2024KLIB03);应急管理部天津消防研究所基本科研业务费项目(2023SJ02)

Research on thermal runaway characteristics and early warning methods of lead-acid batteries

Liu Bingxi1,4,5, Xie Fei2, Zhang Jin1,4, Zhuo Ping1,4,5, Ma Xiao3, Bi Xiaoyang3   

  1. (1. Tianjin Fire Science and Technology Research Institute of MEM, Tianjin 300381, China; 2. China Oil and Gas Pipeline Network Corporation, Beijing 100013; 3. School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China; 4. Key Laboratory of Electrochemical Energy and Fire Safety Joint Innovation, Ministry of Emergency Management, Beijing 102000, China; 5. Key Laboratory of Fire Protection Technology for Industry and Public Building, Ministry of Emergency Management, Tianjin 300381, China)
  • Received:2025-07-14 Revised:2025-08-20 Online:2025-09-15 Published:2025-09-15

摘要: 搭建了集成恒温环境模拟、充放电控制及多参数监测(温度、电压、气体浓度)试验平台,在3种环境温度下进行正常充放电与过充对比试验。研究发现:正常充放电时,电池温度变化受环境温度主导,低温下温升缓慢,高温下持续升温,而常温工况温度稳定;过充工况下则呈现显著危险特征,在不同环境温度下,电池温度均突破100 ℃,并伴随氢气、VOCs及二氧化硫、硫化氢等可燃气体的剧烈释放,密闭空间内存在燃爆风险,其中40 ℃环境温升速率最快。基于上述规律,本文研究提出了一套智能化热失控预警系统,依托BMS主-从架构,实时采集电池端的电压、多点温度信息及氢气和VOCs等气体浓度。核心预警参数包括温度阈值、温升速率上限及氢气浓度阈值,并融合SOC/SOH算法跟踪电池健康状态。该系统可对电池异常温升与气体泄漏实现毫秒级响应,触发保护机制,以预防热失控事故。

关键词: 铅酸电池;热失控;环境温度;预警监测

Abstract: An experimental platform integrating constant-temperature environment simulation, charge-discharge control, and multi-parameter monitoring (temperature, voltage, gas concentration) was established. Normal charge-discharge and overcharge comparison tests were conducted under three environmental temperatures. The study found that during normal charge-discharge, the temperature change of the battery is dominated by the environmental temperature, with a slow temperature rise at low temperatures, a continuous temperature increase at high temperatures, and a stable temperature at room temperature. Under the overcharge condition, however, significant dangerous characteristics were observed: the battery temperature exceeded 100 °C in all three environmental temperatures, accompanied by the intense release of flammable gases such as hydrogen, VOCs, sulfur dioxide, and hydrogen sulfide, posing an explosion risk in a confined space, with the fastest temperature rise rate at 40 °C. Based on these findings, this paper proposes an intelligent thermal runaway early warning system: relying on the BMS master-slave architecture, it collects battery terminal voltage, multi-point temperatures, and hydrogen/VOCs gas concentrations in real time. The core early warning parameters include temperature thresholds, upper limits of temperature rise rate, and hydrogen concentration thresholds, and it integrates SOC/SOH algorithms to track the battery's health status. This system can respond to abnormal temperature rise and gas leakage within milliseconds, triggering protection mechanisms to prevent thermal runaway accidents.

Key words: lead-acid battery; thermal runaway; ambient temperature; early warning monitoring