主管:中华人民共和国应急管理部
主办:应急管理部天津消防研究所
ISSN 1009-0029  CN 12-1311/TU

消防科学与技术 ›› 2025, Vol. 44 ›› Issue (9): 1274-1280.

• • 上一篇    下一篇

基于改进YOLOv8的小目标火焰图像检测算法研究

于春雨, 李晓旭, 李泊宁, 张曦   

  1. (应急管理部沈阳消防研究所,辽宁 沈阳 110034)
  • 收稿日期:2025-04-21 修回日期:2025-08-05 出版日期:2025-09-15 发布日期:2025-09-15
  • 作者简介:于春雨,应急管理部沈阳消防研究所,副研究员,主要从事图像火灾探测技术研究,辽宁省沈阳市皇姑区文大路218-20号甲,110034,437951082@qq.com。
  • 基金资助:
    应急管理部重点科技计划项目(2024EMST111105)

Research on small target flame image detection algorithm based on improved YOLOv8

Yu Chunyu, Li Xiaoxu, Li Boning, Zhang Xi   

  1. (Shenyang Fire Science and Technology Research Institute of MEM, Shenyang Liaoning 110034, China)
  • Received:2025-04-21 Revised:2025-08-05 Online:2025-09-15 Published:2025-09-15

摘要: 机场航站楼、体育场馆等大跨度空间场所,由于其特殊的建筑结构和内部空间布局,常规火灾探测技术已经无法在响应时间和灵敏度上满足此类场所火灾早期预警的需求。而现有图像型火灾探测器最远探测距离为100 m,许多大跨度空间建筑的横向跨越距离超过200 m,这对图像型火灾探测器的探测距离和灵敏度提出了更高的要求,远距离大范围空间内火灾早期探测需要提升探测算法对于小目标火的准确识别能力。针对该问题,设计了一种改进YOLOv8的小目标火焰图像检测算法。在模型准确率提升方面,增加了融入坐标注意力和动态残差调节CA-Res模块;在模型复杂度控制方面,改进了模型中BottleneckCSP模块;在提高模型多尺度检测能力方面,在模型的输出端Head部分增加小目标火灾检测层。对比测试表明,针对YOLOv8的三方面改进,极大地提高了模型火焰图像检测准确率,且对于小目标火焰图像具有较好的检测准确性和实时性,为解决图像火灾探测技术远距离大范围探测难题,实现机场航站楼、体育场馆等大跨度空间场所火灾早期预警提供了有效技术方案。

关键词: 火灾探测;目标检测;深度学习;小目标;火焰图像检测

Abstract: Airport terminals, sports stadiums, and other large-span spatial venues pose significant challenges for conventional fire detection technologies in meeting early warning requirements due to their unique architectural structures and internal spatial layouts. Existing image-based fire detectors currently have a maximum detection range of 100 meters, while the horizontal spans of many large-span buildings exceed 200 meters, demanding higher detection distances and sensitivity from such detectors. In the early detection of fires in long-distance and large-scale spaces, it is necessary to improve the ability of detection algorithms to accurately identify small target fires. To address this issue, this study proposes an improved YOLOv8-based algorithm specifically optimized for small-target flame detection. This study proposes an improved YOLOv8-based flame image detection algorithm. For enhancing model accuracy, a CA-Res module integrating coordinate attention and dynamic residual adjustment is incorporated. To control model complexity, the BottleneckCSP module in the original model has been optimized. For improving multi-scale detection capability, an additional small-target fire detection layer is added to the Head section of the model's output terminal. Comparative tests demonstrate that the three-dimensional improvements to YOLOv8 significantly enhance flame detection accuracy while maintaining satisfactory detection precision and real-time performance for small-target flame images. This technical solution effectively addresses the challenges of long-distance and wide-range fire detection in image-based fire monitoring systems, providing a viable approach for early fire warning in large-span spaces such as airport terminals and stadiums.

Key words: fire detection; target detection; deep learning; small target;flame image detection