主管:中华人民共和国应急管理部
主办:应急管理部天津消防研究所
ISSN 1009-0029  CN 12-1311/TU

消防科学与技术 ›› 2025, Vol. 44 ›› Issue (10): 1547-1559.

• • 上一篇    下一篇

基于EWT-WOA-ELM的电气线路发光连接诊断方法

吕亮, 杨鹏涛, 朱恺, 徐阳, 汲胜昌   

  1. (西安交通大学 电工材料电气绝缘全国重点实验室,陕西 西安 710049)
  • 收稿日期:2025-06-09 修回日期:2025-08-27 出版日期:2025-10-23 发布日期:2025-10-15
  • 作者简介:吕 亮,西安交通大学电气工程学院高级工程师,主要从事高电压试验技术、电气火灾探测技术方面的研究工作,陕西省西安市咸宁西路8号,710049,lvliang@xjtu.edu.cn。
  • 基金资助:
    国家重点研发计划项目(2023YFC3009803)

Diagnostic method for electrical circuit glowing contact based on EWT-WOA-ELM

Lyu Liang, Yang Pengtao, Zhu Kai, Xu Yang, Ji Shengchang   

  1. (National Key Laboratory of Electrical Materials and Insulation, Xi'an Jiaotong University, Xi'an Shaanxi 710049, China)
  • Received:2025-06-09 Revised:2025-08-27 Online:2025-10-23 Published:2025-10-15

摘要: 接触不良是低压线路中常见的火灾诱因,接触不良达到一定高温后会引发电气线路发生发光连接故障,具有极大的火灾隐患。为了对电气线路发光连接故障进行诊断,提出了基于经验小波变换(EWT)的时频域特征提取方法,并基于融合特征集,使用鲸鱼优化算法(WOA)获取了极限学习机(ELM)的最优输入权值和隐含阈值,并提出了基于EWT-WOA-ELM的神经网络模型。结果表明:模型的最优隐含层神经元个数为18,本模型交叉验证平均准确率和平均交叉熵损失分别为96%和0.623 9,实现了不同工况下对正常状态、发光连接阶段前期和末期的故障诊断。采取不同试验室的数据使用本模型进行验证,发现模型识别状态与实际状态一致。

关键词: 发光连接, 故障诊断, 机器学习, 极限学习机

Abstract: Poor contact is a common cause of fire in low-voltage lines. When the poor contact reaches a certain high temperature, it will lead to glowing contact fault of electrical lines, which has great potential fire hazards. In order to diagnose the glowing contact fault of electrical circuit, this paper proposes a time-frequency domain feature extraction method based on empirical wavelet transform (EWT), and uses the whale optimization algorithm (WOA) to obtain the optimal input weights and hidden thresholds of extreme learning machine (ELM) based on the fusion feature set, and proposes a neural network model based on EWT-WOA-ELM. The results show that the optimal number of neurons in the hidden layer of the model is 18. The cross validation average accuracy and average cross entropy loss of this model are 96% and 0.623 9, respectively, achieving fault diagnosis for normal state, early and late stages of glowing contact under different operating conditions. Different laboratory data were used to validate this model, and it was found that the model's recognition state was consistent with the actual state.

Key words: glowing contact, fault diagnosis, machine learning, extreme learning machine