主管:中华人民共和国应急管理部
主办:应急管理部天津消防研究所
ISSN 1009-0029  CN 12-1311/TU

消防科学与技术 ›› 2025, Vol. 44 ›› Issue (12): 1740-1746.

• • 上一篇    下一篇

玻纤环氧层压板防火性能与热烧穿特性研究

周亮12, 蔡发明1, 张彤3, 蒋慧灵12   

  1. (1. 北京科技大学 资源与安全工程学院,北京 100083; 2.安全生产新型风险辨识与防控联合创新应急管理部重点实验室, 北京 100083; 3. 北京航空航天大学 航空科学与工程学院,北京 100191)
  • 收稿日期:2024-08-09 修回日期:2024-10-14 出版日期:2025-12-15 发布日期:2025-12-25
  • 作者简介:周 亮,北京科技大学资源与安全工程学院研究员,主要从事防火与灭火技术研究,北京市海淀区学院路 30 号, 100083。
  • 基金资助:
    北京市自然科学基金项目(8222021)

Study on fire performance and thermal burn-through characteristics of glass fiber-reinforced epoxy laminate

Zhou Liang1,2, Cai Faming1, Zhang Tong3, Jiang Huiling1,2   

  1. (1. School of Resources and Safety Engineering, University of Science and Technology Beijing, Beijing 100083, China; 2. Joint Innovation Key Laboratory of Ministry of Emergency Management for Emerging Risk Identification, Prevention and Control in Safety Production, Beijing 100083, China; 3. School of Aeronautics Sciences and Engineering, Beihang University, Beijing 100191, China)
  • Received:2024-08-09 Revised:2024-10-14 Online:2025-12-15 Published:2025-12-25

摘要: 为了探索一种玻璃纤维增强环氧树脂复合材料在自主适航中的应用潜力,对其防火性能和热稳定性进行了全面研究,测试了该材料的氧指数和垂直燃烧性能,以及10、20、30、40 ℃/min 4种不同升温速率下的热解行为,并用Kissinger方法计算了材料热解动力学参数。在热烧穿行为的研究中,选用1、2、3、4 cm 4种不同厚度的玻纤环氧层压板,在50 kW/m2的辐射照度下开展锥形量热仪测试,使用内嵌热电偶的特制样品盒,在单面辐射加热条件下,同时记录试样表面、内部以及底部的温度变化。最后,基于一维传热理论建立温度响应模型,用于预测材料的热烧穿行为。研究结果表明,该材料的氧指数值高达48.4%,达到UL94 V-0等级,活化能为190.31 kJ/mol,表明其具有优异的防火性能和较高的热稳定性;当试样厚度较大时具有良好的抗烧穿性能,所建立的温度响应模型可以较好地预测玻纤环氧复合材料在单边辐射加热条件下的热烧穿行为。

关键词: 玻纤环氧层压板, 防火性能, 热稳定性, 热烧穿, 预测模型

Abstract: To explore the application potential of a glass fiber-reinforced epoxy composite in autonomous seaworthiness, extensive studies have been conducted on its fire performance and thermal stability through tests including oxygen index, vertical combustion and the thermal degradation behavior under four heating rates of 10, 20, 30, 40 ℃/min. The kinetic parameters of thermal degradation were calculated by Kissinger method. In the study of thermal burn-through, glass fiber-reinforced epoxy laminates with four different thickness of 1, 2, 3, 4 cm were selected to carry out cone calorimeter test under an irradiation level of 50 kW/m2. A tailor-made sample box embedded with thermocouples enabled simultaneous recording of surface, internal, and bottom temperatures under unilateral radiation heating. Finally, based on one-dimensional heat transfer theory, a temperature response model was developed to predict the thermal burn-through behavior of the material. Results indicated a high oxygen index of 48.4%, reaching the UL94 V-0 grade, and the activation energy of the composite is 190.31 kJ/mol, underscoring its excellent fire performance and high thermal stability. Thicker samples exhibited enhanced burn-through resistance. The established temperature response model is effective in forecasting the thermal burn-through behavior of the glass fiber-reinforced epoxy composite under unilateral radiation heating.

Key words: glass fiber-reinforced epoxy laminate, fire performance, thermal stability, thermal burn-through, prediction model