主管:中华人民共和国应急管理部
主办:应急管理部天津消防研究所
ISSN 1009-0029  CN 12-1311/TU

消防科学与技术 ›› 2025, Vol. 44 ›› Issue (12): 1783-1789.

• • 上一篇    下一篇

加氢站储氢罐氢泄漏扩散规律及人员疏散路径规划

姚勇征, 谭路遥, 潘傲澜, 胡茂炜   

  1. (中国矿业大学(北京) 应急管理与安全工程学院,北京 100083)
  • 收稿日期:2025-06-16 修回日期:2025-08-13 出版日期:2025-12-15 发布日期:2025-12-25
  • 作者简介:姚勇征,中国矿业大学(北京)应急管理与安全工程学院,副教授,博士,主要从事氢能源安全利用研究,北京市海淀区学院路丁11号,100083,yaoyz@cumtb.edu.cn。
  • 基金资助:
    北京市科技计划“揭榜挂帅”项目(Z231100003823020);北京市科技新星计划项目(20240484576)

Diffusion law of hydrogen and personnel evacuation path planning of hydrogen storage tank leakage in hydrogen refueling stations

Yao Yongzheng, Tan Luyao, Pan Aolan, Hu Maowei   

  1. (School of Emergency Management and Safety Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China)
  • Received:2025-06-16 Revised:2025-08-13 Online:2025-12-15 Published:2025-12-25

摘要: 为预防储氢罐因泄漏引发的安全事故,采用CFD数值模拟软件建立加氢站20 MPa储罐泄漏扩散数值模型,分析隔爆墙、泄漏孔径、环境风速对氢泄漏扩散的影响。进一步基于数值模拟结果,采用改进A*算法规划人员疏散路径。结果表明:氢气撞击隔爆墙后,氢气扩散路径发生偏转,大部分氢气沿墙面左、右两侧扩散,防止了可燃区域扩大。离隔爆墙越近,可燃氢气云剖面越大,燃爆风险也增大;泄漏孔径越大,形成的可燃区域越大,可燃氢气云体积越大。泄漏孔径达到5 mm时,可燃区域扩大到其他工作单元,而泄漏孔径达到10 mm,可燃区域扩大到加氢站外围;当泄漏孔径等于2 mm,沿泄漏方向过高的环境风速(5、8 m/s)有利于隔爆墙上方氢气沿泄漏方向扩散,但致使隔爆墙下侧氢气扩散难度增大,造成可燃氢气云积聚。将氢气体积分数1%扩散范围作为危险区域,考虑风向、风速等因素的影响,采用改进A*算法实现加氢站维修及巡检人员最优疏散路径规划。

关键词: 储氢罐, 数值模拟, 隔爆墙, 泄漏孔径, 环境风速, 疏散路径

Abstract: To prevent safety accidents resulting from hydrogen storage tank leakage, the CFD software was used to establish a numerical model for the leakage and diffusion of 20 MPa storage tanks in hydrogen refueling stations. The impacts of explosion-proof walls, leakage diameters, and ambient wind speeds on hydrogen leakage diffusion were analyzed. Furthermore, based on the numerical simulation results, the improved A* algorithm was adopted to plan the evacuation path of personnel in the hydrogen refueling station. The results show that after hydrogen strikes explosion-proof walls, its diffusion path of hydrogen is altered. Most of hydrogen diffuses along the left and right sides of the wall, preventing the expansion of the flammable area. The closer to the explosion-proof walls, the larger the profile of the flammable hydrogen cloud, and the greater the risk of explosion. The larger the leakage diameter, the larger the flammable area formed, and the greater the volume of flammable hydrogen gas cloud. When the leakage diameter reaches 5 mm, the flammable area expands to other working units. When the leakage diameter reaches 10 mm, the flammable area expands to the outside of the hydrogen refueling station. When the leakage diameter is 2 mm, the excessively high ambient wind velocity along the leakage direction (5, 8 m/s) is introduced, which is conducive to the diffusion of hydrogen above the explosion-proof wall along the leakage direction. However, the hydrogen is hard to diffuse below the explosion-proof wall, resulting in the accumulation of flammable hydrogen clouds. The diffusion range of hydrogen concentration at 1% volume fraction is defined as the hazardous area. Considering the influence of factors such as wind direction and wind velocity, the improved A* algorithm is adopted to realize the optimal evacuation path planning for maintenance and inspection personnel of hydrogen refueling stations.

Key words: hydrogen storage tank, numerical simulation, explosion-proof wall, leakage diameter, ambient wind velocity, evacuation route