主管:中华人民共和国应急管理部
主办:应急管理部天津消防研究所
ISSN 1009-0029  CN 12-1311/TU

消防科学与技术 ›› 2022, Vol. 41 ›› Issue (7): 899-904.

• • 上一篇    下一篇

三元锂离子电池直径和荷电状态对热失控传播影响研究

徐 亮1,2   

  1. (1.国网电力科学研究院有限公司,北京 100081; 2.北京南瑞怡和科技有限公司,北京 100083)
  • 出版日期:2022-07-15 发布日期:2022-07-15
  • 作者简介:作者简介:徐 亮(1980-),男,北京南瑞怡和科技有限公司高级工程师,主要从事新能源消防方面的工作,北京市海淀区学院路丁十一号中国矿业大学(北京)综合楼,100083。

Study on the influence of ternary lithium-ionbattery diameter and state of charge on thermal runaway propagation

XU Liang1,2   

  1. (1. State Grid Electric Power Research Institute Co., Ltd., Beijing 100043, China; 2. Beijing Nari Yihe Technology Co., Ltd., Beijing 100083, China)
  • Online:2022-07-15 Published:2022-07-15

摘要: 随着我国新能源汽车的不断发展,锂离子电池作为新能源电动汽车最重要的储能设备,由于其能量密度高的特点,存在着燃烧迅速、爆炸并触发相邻电池热失控传递的热安全危险,制约着更规模化的应用和推广,严重威胁着人员的生命财产安全。电池的热失控主要与其电池形状、荷电状态、连接方式等有关。而在不同荷电状态和不同直径的耦合条件下的电池热失控研究是提高锂电池安全性能的研究重点。为了探究锂离子电池热失控传播过程的主要影响机制,采用不同直径(10440型、14500型、18650型、21700型、26650型和32650型)和不同荷电状态(50%、70%、100%)的三元锂离子电池为研究对象,考察其在一维线性排列方式下的热失控传播时间及热失控空间传播速率变化特征,进而深入分析电池直径和荷电状态对热失控传播时间及热失控空间传播速率的影响机制。采用实验数据、传热学理论以及无量纲分析相结合的方法建立了阻断电池热失控传播链的计算模型,进而预判电池间的热失控传播时间,结合无量纲分析得到了不同荷电状态(50%、70%、100%)电池热失控传播时间与电池直径(10,14,18,21,26,32 mm)的特征关系,提出了一维排列方式锂离子电池热失控传播时间的预测模型。实验研究结果表明:当电池荷电状态(SOC)一定时,电池直径越大,总热阻随之增高,进而导致热失控传播时间增大和空间热失控传播速率减小。在总电能相同的条件下,锂离子电池的荷电量越大,产热量也随之越大。电池直径对电池热失控传播过程的影响主要取决于电池传热过程中热阻的变化,采用集总模型理论、傅里叶理论和界面连续性条件,建立整个锂离子电池模组的热阻公式,并通过公式推导出锂离子电池荷电状态与电池产热量之间的关系。研究结果表明:当电池直径一定时,模组内电池热失控过程的总产热量随着电池荷电状态的增大而增大;在高温环境下,电池之间的热失控传播速率也将随之大幅提升。本文通过在锂离子电池的热失控传播时间段设计阻断传播链的计算模型,进而预判电池间的热失控传播时间,结合无量纲分析系数拟合得出电池荷电状态在50%、70%和100%时,单体电池间的平均无量纲热失控传播时间与电池宽高比、电池荷电状态之间的关系,提出了模组内相邻单体电池间热失控传播时间预测模型。

关键词: 关键词:锂离子电池, 热失控传播时间, 热失控空间传播速率, 电池直径

Abstract: Abstract: With the continuous development of new energy vehicles in my country, lithium-ion batteries are the most important energy storage devices for new energy electric vehicles. Due to their high energy density, there is rapid combustion, explosion, and thermal runaway transfer of adjacent batteries. The safety hazard restricts the application and promotion on a larger scale and seriously threatens the safety of people's lives and property. The thermal runaway of a battery is mainly related to its shape, state of charge, and connection method. The research on the thermal runaway of batteries under the coupling conditions of different states of charge and different diameters is the focus of research to improve the safety performance of lithium batteries.In order to investigate the main influencing mechanism of the thermal runaway propagation process of lithium-ion batteries, this paper uses ternary lithium-ion batteries with different diameters (10440, 14500, 18650, 21700, 26650, 32650) and different charge states (50%, 70%, 100%) as the research object. The characteristics of thermal runaway propagation time and thermal runaway spatial propagation rate under the one-dimensional linear arrangement are investigated, and then the influence mechanisms of cell diameter and state of charge on thermal runaway propagation time and thermal runaway spatial propagation rate are analyzed in depth. A computational model for blocking the thermal runaway propagation chain of batteries was developed using a combination of experimental data, heat transfer theory, and dimensionless analysis, and then predicted the thermal runaway propagation time between batteries. The characteristic relationship between thermal runaway propagation time and cell diameter (10,14,18,21,26,32 mm) for different charge states (50%,70%,100%) was obtained by combining dimensionless analysis, and a prediction model for thermal runaway propagation time of lithium-ion batteries in the one-dimensional arrangement was proposed. The experimental results show that when the battery state of charge is certain, the larger the battery diameter, the higher the total thermal resistance, which in turn leads to an increase in thermal runaway propagation time and a decrease in the spatial thermal runaway propagation rate. Under the condition of the same total electric power, the higher the charge of the Li-ion battery, the higher the heat production. The influence of cell diameter on the thermal runaway propagation process of the battery mainly depends on the change of thermal resistance in the heat transfer process of the battery, and the thermal resistance formula of the whole lithium-ion battery module is established by using the aggregate model theory, Fourier theory and the interface continuity condition, and the relationship between the charge state of the lithium-ion battery and the heat production of the battery is deduced by the formula. The research results show that when the cell diameter is certain, the total heat production of the thermal runaway process of the cells in the module increases with the increase of the battery state of charge; the thermal runaway propagation rate between the cells will also increase significantly under the high-temperature environment.In this paper, we design a computational model to block the propagation chain during the thermal runaway propagation time of lithium-ion batteries, and then predict the thermal runaway propagation time between batteries. The relationship between the average dimensionless thermal runaway propagation time between single cells and the cell aspect ratio and cell state of charge at 50%, 70%, 100% is fitted with the dimensionless analysis coefficients, and the prediction model of thermal runaway propagation time between adjacent single cells in the module is proposed.

Key words: Key words: lithium-ion battery, thermal runaway propagation time, thermal runaway space propagation rate, battery diameter