主管:中华人民共和国应急管理部
主办:应急管理部天津消防研究所
ISSN 1009-0029  CN 12-1311/TU

消防科学与技术 ›› 2025, Vol. 44 ›› Issue (10): 1495-1501.

• • 上一篇    下一篇

基于ReGAT-ResNet的电气线路超温三诱因识别方法研究

李利, 王昊舟, 潘红光, 石珂珂   

  1. (西安科技大学 电气与控制工程学院,陕西 西安 710054)
  • 收稿日期:2025-06-03 修回日期:2025-08-09 出版日期:2025-10-23 发布日期:2025-10-15
  • 作者简介:李 利,西安科技大学电气与控制工程学院讲师,主要从事网络化系统控制、模式识别及应用、故障诊断等方面的研究,陕西省西安市雁塔区雁塔中路58号,710054,lilxiansen@163.com。
  • 基金资助:
    国家重点研发计划项目(2023YFC3009802);陕西省自然科学基础研究计划项目(2024JC-YBQN-0726,2025JC-YBQN-903);陕西省秦创原“科学家+工程师”队伍建设项目(2022KXJ-38);陕西省教育厅服务地方专项计划项目(23JC049);陕西省教育厅科学研究计划项目(23JK0152)

Research on the identification method of over-temperature three inducements of electrical circuits based on ReGAT-ResNet

Li Li, Wang Haozhou, Pan Hongguang, Shi Keke   

  1. (College of Electrical and Control Engineering, Xi'an University of Science and Technology, Xi'an Shaanxi 710054, China)
  • Received:2025-06-03 Revised:2025-08-09 Online:2025-10-23 Published:2025-10-15

摘要: 当电气线路中出现过载、谐波以及非周期电流等异常工况时,极易导致线路温度异常升高,进而引发电气火灾。快速、准确地识别这些超温诱因,是提升电气火灾预警准确率、保障消防安全的关键。本文提出了一种基于递归图-图注意力机制与残差网络(ReGAT-ResNet)的电气线路超温诱因识别方法,利用超温诱因电流信号的时序依赖性,通过相空间重构将其映射为高维轨迹,并结合递归图方法提取时间动态结构特征,引入图神经网络对图结构数据进行建模,构建了三层图注意力网络(GAT),并通过引入残差连接机制增强了深层特征的稳定传播与融合能力,同时使用全局平均池化与全连接层实现分类预测。利用不同工况下的过载、谐波以及非周期电流试验数据集进行验证和分析,试验结果表明,该模型的诱因识别准确率为99.57%,可为电气火灾的早期预警与消防风险防控提供有效的技术支撑。

关键词: 超温诱因, 诱因识别, 递归图, 图注意力, 残差网络, 电气线路

Abstract: When abnormal conditions such as overload, harmonics, and non-periodic currents occur in electrical circuits, they can easily cause abnormal temperature rises, which may lead to electrical fires. Rapid and accurate identification of these over-temperature causes is crucial for improving the accuracy of fire warning systems and ensuring fire safety. This paper proposes an over-temperature cause identification method for electrical circuits based on Recurrence Graph-Graph Attention Network and Residual Network (ReGAT-ResNet). By leveraging the temporal dependencies of current signals under over-temperature conditions, the method maps them into high-dimensional trajectories through phase space reconstruction, and extracts temporal dynamic structural features using recurrence plot techniques. A graph neural network is then employed to model the graph-structured data, and a three-layer Graph Attention Network (GAT) is constructed. The introduction of a residual connection mechanism enhances the stable propagation and fusion of deep features, while global average pooling and a fully connected layer are used for classification prediction. The method is validated and analyzed using experimental datasets under different operating conditions involving overload, harmonics, and non-periodic currents. Experimental results show that the proposed model achieves an identification accuracy of 99.57%, can provide an effective technical foundation for early warning and fire risk prevention in electrical systems.

Key words: overtemperature triggers, trigger identification, recursive graphs, figure attention, residual networks, electrical circuits